Atom-Photon Entanglement

نویسندگان

  • Jürgen Volz
  • Khaled Karrai
چکیده

Entanglement is the key element for many experiments in quantum communication and information. Especially for future applications like quantum networks or the quantum repeater it is mandatory to achieve entanglement also between separated quantum processors. For this purpose, entanglement between different quantum objects like atoms and photons forms the interface between atomic quantum memories and photonic quantum communication channels, finally allowing the distribution of quantum information over arbitrary distances. Furthermore , atom-photon entanglement is also the key element to give the final answer to Einstein's question wether a local and realistic description of physical reality is possible or not. Until now, the results of many experiments testing Bell's inequality indicate that local realistic theories are not a valid description of nature. However, all these tests were subject to loopholes. In this context, atom-photon entanglement represents a crucial step towards the realization of entanglement between distant atoms that would allow a final loophole-free test of Bell's inequality. This thesis describes the generation and verification of an entangled state between a single neutral atom and a single photon at a wavelength suitable for long distance information transport. For this purpose we store a single 87 Rb atom in an optical dipole trap. The atom is prepared in an excited state, that together with its two decay channels forms a Λ-type transition. In the following spontaneous decay, conservation of angular momentum leads to the formation of an entangled state between the angular momentum of the atom and the polarization of the emitted photon. To verify the entanglement we introduce an atomic state-analysis, based on a state-selective adiabatic population transfer between atomic hyperfine levels. This allows the direct analysis of the internal state of the atom in arbitrary measurement bases without the necessity of additional state manipulations. Using this method together with a polarization measurement of the emitted photon, we performed correlation measurements as well as a full state tomography of the combined atom-photon system. From the experimental results we obtain an entanglement fidelity of 87%, which clearly shows that the generated state is entangled. The degree of entanglement observed in our experiment is high enough to allow the generation of entanglement between distant atoms via entanglement swapping, which would allow a final, loophole-free test of Bell's inequality. Furthermore, it opens up a variety of applications in quantum communication and information science.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics of the Temporal Behavior of Entanglement between Photonic Binomial Distributions and a Two-Level Atom in a Damping Cavity

In the present study, temporal behavior of entanglement between photonic binomial distributions and a two-level atom in a leaky cavity, in equilibrium with the environment at a temperature T, is studied. In this regard, the master equation is solved in the secular approximation for the density matrix, when the initial photonic distribution is binomial, while the atomic states obey the Boltzmann...

متن کامل

Phase-Controlled Atom-Photon Entanglement in a Three-Level V-Type Atomic System via Spontaneously Generated Coherence

We investigate the dynamical behavior of the atom-photon entanglement in a V-type three-level quantum system using the atomic reduced entropy. It is shown that an atom and photons are entangled at the steady-state; however disentanglement can also be achieved in an special condition. It is demonstrated that in the presence of quantum interference induced by spontaneous emission, the reduced ent...

متن کامل

Entanglement of an Atom and Its Spontaneous Emission Fields via Spontaneously Generated Coherence

The entanglement between a ?-type three-level atom and its spontaneous emission fields is investigated. The effect of spontaneously generated coherence (SGC) on entanglement between the atom and its spontaneous emission fields is then discussed. We find that in the presence of SGC the entanglement between the atom and its spontaneous emission fields is completely phase dependent, while in absen...

متن کامل

ar X iv : q ua nt - p h / 05 09 14 6 v 1 2 1 Se p 20 05 Engineering atom - atom thermal entanglement via two - photon process

We study the system that two atoms simultaneously interact with a single-mode thermal field via different couplings and different spontaneous emission rates when two-photon process is involved. It is found that we indeed can employ the different couplings to produce the atom-atom thermal entanglement in two-photon process. The different atomic spontaneous emission rates are also utilizable in g...

متن کامل

The Impact of the Spectral Filter Bandwidth on the Spectral Entanglement and Indistinguishability of Photon Pairs of SPDC Process

In this paper, we have investigated the dependence of the spectral entanglement and indistinguishability of photon pairs produced by the spontaneous parametric down-conversion (SPDC) procedure on the bandwidth of spectral filters used in the detection setup. The SPDC is a three-wave mixing process which occurs in a nonlinear crystal and generates entangled photon pairs and utilizes as one of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006